$$ \begin{align} \bar{z}&=\frac{1}{T}\sum_{t=1}^{T}z_t \in \mathbb{R}^{D \times 1}\\ C&=\frac{1}{T}\sum_{t=1}^{T}(z_t-\bar{z})(z_t-\bar{z})^{\top}=V\Lambda V^{\top} \in \mathbb{R}^{D \times D} \end{align}
$$
$$ z_t, \bar{z} \in \mathbb{R}^{D \times 1}: \text{Flatten Vector of Latent} \in \mathbb{R}^{C \times H \times W}\\ V=[v_1, \dots, v_d] \in \mathbb{R}^{D \times D}: \text{Eigenvector Matrix}\\ \Lambda = \text{diag}(\lambda_1 \ge \dots \ge \lambda_d) \in \mathbb{R}^{D \times D}: \text{Eigenvalue Matrix} $$
$$ \begin{align} v_i^{\top}v_j=0, i \neq j \\ V^{\top}V = I_D \end{align} $$
$$ \begin{align} W&=[v_1, v_2] \in \mathbb{R}^{D \times 2}\\ \Phi(x)&=\text{Proj}{PCA{2D}}(x)\\&=W^{\top}(x-\bar{z}) \in \mathbb{R}^{2 \times 1} \end{align} $$
$$ \begin{align} \Phi(z_0)&=W^{\top}(z_0-\bar{z})\\ &=W^{\top}z_0-W^{\top}\bar{z} \end{align} $$
$$ \begin{align} \Phi(z_T^{\text{rand}}) &=\Phi(\sqrt{\bar\alpha_T}z_0+\sqrt{1-\bar\alpha_T}\epsilon)\\ &=W^{\top}(\sqrt{\bar\alpha_T}z_0+\sqrt{1-\bar\alpha_T}\epsilon-\bar{z})\\ &=\sqrt{\bar\alpha_T}W^{\top}z_0+\sqrt{1-\bar\alpha_T}W^{\top}\epsilon-W^{\top}\bar{z} \end{align} $$
$$ \begin{align} \Delta&= \Phi(z_0)-\Phi(z_T^{\text{rand}})\\ &=(1-\sqrt{\bar\alpha_T})W^{\top}z_0-\sqrt{1-\bar\alpha_T}W^{\top}\epsilon\\ &\approx(1-\sqrt{\bar\alpha_T})W^{\top}z_0 \end{align} $$
$$ \begin{align} \epsilon \sim \mathcal{N}(0, I_D) \rightarrow \left\lVert \epsilon \right\lVert &= \sqrt{\epsilon_1^2+ \cdots+\epsilon_D^2} \sim \chi_D \\
\mathbb{E}[\left\lVert \epsilon \right\lVert]&=\sqrt{2}\frac{\Gamma(\frac{D+1}{2})}{\Gamma(\frac{D}{2})}\\
W^{\top}\epsilon \sim \mathcal{N}(0, I_2) \rightarrow \left\lVert W^{\top}\epsilon \right\lVert &= \sqrt{(W^{\top}\epsilon)_1^2 + (W^{\top}\epsilon)_2^2} \sim \chi_2\\
\mathbb{E}[\left\lVert W^{\top}\epsilon \right\lVert]&=\sqrt{2}\frac{\Gamma(\frac{2+1}{2})}{\Gamma(\frac{2}{2})}\\ \end{align} $$
$$ \begin{align} \because x \sim \mathcal{N}(\mu,\Sigma) &\rightarrow Ax \sim \mathcal{N}(A\mu, A\Sigma A^{\top})\\ W^{\top}\epsilon&\sim\mathcal{N}(0, W^{\top}I_D W)\\ &=\mathcal{N}(0, I_2) \end{align} $$
$$ \begin{align} \frac{\mathbb{E}[\left\lVert W^{\top}\epsilon \right\lVert]}{\mathbb{E}[\left\lVert \epsilon \right\lVert]}&=\frac{\Gamma(\frac{3}{2})\Gamma(\frac{D}{2})}{\Gamma(\frac{D+1}{2})\Gamma(1)}=\Gamma(\frac{3}{2})\frac{\Gamma(\frac{4 \times 128 \times 128}{2})}{\Gamma(\frac{4 \times 128 \times 128 + 1}{2})}\\ &\approx \frac{\sqrt{\pi}}{2} \times 0.0055 =0.0049 \space (0.49\%) \end{align} $$
PCA 수행 시 DDIM Inversion Latent의 구조(분산이 큰 방향)를 찾아서 PC1, PC2 축을 생성
→ $z_0$의 에너지는 대부분 PC1 (+ PC2)에 몰려 있음
→ Projection 이후에도 크기가 급격하게 줄어들지 않고 어느 정도 보존