논문 Preliminaries에 넣으면 좋을 듯

DDPM Reverse Process

$$ p(x_{t-1}|x_t)=\mathcal{N}(z_{t-1};\mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))\\

\mu_{\theta}(z_t, t)=\frac{1}{\sqrt{\alpha_t}}(z_t-\frac{\beta_t}{\sqrt{1-\bar\alpha_t}}\epsilon_{\theta}(z_t, t)), \space \Sigma_{\theta}(z_t, t)=\sigma_t^2I $$

Sampling Formula - from DDIM paper

https://juniboy97.tistory.com/53

image.png

$$ \mathbf{x}{t-1} = \sqrt{\bar\alpha{t-1}} \underbrace{\left( \frac{\mathbf{x}t - \sqrt{1 - \bar\alpha_t} \epsilon\theta(\mathbf{x}t, t)}{\sqrt{\bar\alpha_t}} \right)}{\text{predicted } \\mathbf{x}_0 \\text{''}} + \\underbrace{\\sqrt{1 - \\bar\\alpha_{t-1} - \\sigma_t^2} \\cdot \\epsilon_\\theta(\\mathbf{x}_t, t)}_{\\text{direction pointing to } \mathbf{x}t \text{''}} + \underbrace{\sigma_t \epsilon_t}{\text{random noise}} $$

→ “Diffusion Model의 Sampling 과정(Denoising Process)이 Latent 뿐만 아니라 timestep $t$에 의존한다”

(DDPM & DDIM 논문 인용하기!!)

Latent Diffusion Model Loss Function Formula

$$ L_{LDM}=\mathbb{E}{\mathcal{E}(x),\epsilon\sim\mathcal{N}(0,1),t}[\lVert \epsilon - \epsilon{\theta}(z_t, t) \rVert_2^2] $$